

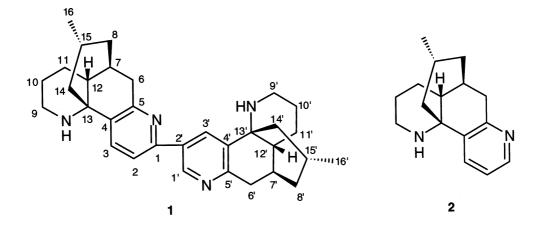
Tetrahedron Letters 41 (2000) 9069-9073

Complanadine A, a new dimeric alkaloid from Lycopodium complanatum

Jun'ichi Kobayashi,* Yusuke Hirasawa, Naotoshi Yoshida and Hiroshi Morita

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan Received 28 August 2000; accepted 14 September 2000

Abstract


A new dimeric alkaloid with a lycodine-type skeleton, complanadine A (1), has been isolated from the club moss *Lycopodium complanatum*, and the structure including the absolute stereochemistry was elucidated on the basis of spectroscopic data. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Lycopodium complanatum; alkaloid; lycodine; dimer; Lycopodiaceae.

Lycopodium alkaloids¹ are a group of natural products with unique ring systems, which have attracted great interest from biogenetic,^{1,2} synthetic,^{1,3} and biological⁴ points of view. Recently we have isolated serratezomines A, B, and C with a seco-serratinine-type, a serratinine-type, and lycodoline-type skeletons, respectively, from the club moss *Lycopodium serratum* var. *serratum*.⁵ Further search for structurally interesting compounds from another club moss resulted in the isolation of a new dimeric alkaloid with a lycodine type skeleton, complanadine A (1), from *Lycopodium complanatum* (Lycopodiaceae). Here we describe the isolation and structure elucidation of 1.

The club moss *L. complanatum*⁶ collected in Hokkaido were extracted with MeOH, and the MeOH extract was partitioned between EtOAc and 3% tartaric acid. Water-soluble materials, adjusted at pH 10 with sat. Na₂CO₃, were partitioned with CHCl₃. CHCl₃-soluble materials were subjected to an amino silica gel column (Hex/EtOAc, 1:0 \rightarrow 0:1 and then CHCl₃/MeOH, 1:0 \rightarrow 0:1), in which a fraction eluted with CHCl₃/MeOH (1:1) was purified by a silica gel column (CHCl₃/MeOH/EtOAc, 10:1:0.5) to afford complanadine A (1, 0.003% yield) together with a known related alkaloid, lycodine (2, 0.0005%).⁷

^{*} Corresponding author. Tel: +81 11 706 3239; fax: +81 11 706 4985; e-mail: jkobay@pharm.hokudai.ac.jp

The molecular formula, $C_{32}H_{42}N_4$, of complanadine A (1) {[α]_D²⁴ +14° (c 0.3, MeOH)} was established by HRFABMS $[m/z 483.3477, (M+H)^+, \Delta -1.1 \text{ mmu}]$. ¹H and ¹³C NMR data (Table 1) disclosed the existence of ten olefinic carbons, two sp^3 quaternary carbons, six sp^3 methines, twelve sp^3 methylenes, and two secondary methyls. Among them, four olefinic carbons $[\delta_c$ 147.15 (d), 154.21 (s), 160.09 (s), and 160.31 (s)] assignable to nitrogen-bearing carbons were elucidated to form two three-substituted pyridine rings together with the remaining six olefinic carbons [δ_c 120.49 (d), 132.70 (s), 133.08 (d), 134.17 (s), 134.78 (s), and 135.25 (d)], while two quaternary carbons (δ_c 60.23 and 60.47) and two methylenes (δ_c 42.05; δ_H 2.73 and 3.05, and δ_c 42.11; δ_H 2.73 and 3.07) were ascribed to those attached to a nitrogen. UV absorptions [290 (£14000) and 251 nm (12000)] also supported the presence of the pyridine ring. Since eight out of fourteen unsaturations were accounted for, 1 was inferred to possess six more rings. The gross structure of 1 was elucidated by analyses of 2D NMR data including ¹H–¹H COSY, HOHAHA, HMQC, and HMBC spectra in CD₃OD (Fig. 1). Each pair of these ¹H and ¹³C NMR signals seemed to be due to each half moiety (parts A and B) of a dimeric compound. In part A, connectivities of C-2 to C-3, C-6 to C-8, C-9 to C-12, C-14 to C-16, C-7 to C-12, and C-8 to C-15 were revealed by the $^{1}H^{-1}H$ COSY and HOHAHA spectra. The presence of a 2,3,6-trisubstituted pyridine ring was elucidated from HMBC correlations of H-3 ($\delta_{\rm H}$ 8.00) to C-1 and C-5, and H-2 ($\delta_{\rm H}$ 7.89) to C-4. HMBC correlations of H-6 to C-5 ($\delta_{\rm C}$ 160.31) and C-4 ($\delta_{\rm C}$ 132.70) suggested the connectivity from C-6 to C-5. The presence of a piperidine ring (N-9 and C-9 to C-13) was deduced from the HMBC correlation of H-9 to C-13 (δ_c 60.23) through a nitrogen atom. HMBC cross-peaks of H-12 to C-4, and H₂-14 to C-13 and C-4 revealed connectivities from C-12 to C-4 and from C-14 to C-4 through C-13, constructing a lycodine-type ring system (part A). On the other hand, the corresponding ${}^{1}H{-}^{1}H$ COSY, HOHAHA, and HMBC correlations were also observed for part B (Fig. 1). HMBC correlations of H-1' to C-2', C-3', and C-5', and H-3' to C-1' and C-5' indicated the existence of a 2,3,5-trisubstituted pyridine ring, constructing another lycodine-type ring system (part B).

The connection between each pyridine ring in parts A and B was provided by the HMBC correlation of H-3' ($\delta_{\rm H}$ 8.61) to C-1 ($\delta_{\rm c}$ 154.21), thus giving rise to the connectivity of C-1 to C-2'. NOESY correlations of H-2/H-3' and H-2/H-1' (Fig. 2) also supported the connectivity

	$\delta_{ m H}$	$\delta_{ m C}$	HMBC (¹ H)
1		154.21	3, 3'
2	7.89 (1H, d, 8.2)	120.49	-) -
3	8.00 (1H, d, 8.2)	135.25	
ļ	0.00 (111, 4, 0.2)	132.70	2, 6, 12, 14
		160.31	3, 6
a	2.82 (1H, d, 19.2)	35.95	8, 12
a b	3.27 (1H, dd, 7.2, 19.2)	55.75	0, 12
0		34.43	6, 8
a	2.26 (1H, m) 1.43 (1H, dt, 3.9, 13.0)		
		43.61	6, 14, 15, 16
b	1.86 (1H, brd, 12.7)	12.05	11
a	2.73 (1H, m)	42.05	11
b	3.05 (1H, brd, 13.5)	27.00	0 11
0	1.80 (2H, m)	27.08	9, 11
1	1.67 (2H, m)	26.12	9
2	1.96 (1H, brs)	43.76	6, 8, 14
3		60.23	9b, 14
4a	1.53 (1H, dd, 4.8, 12.1)	49.96	8, 16
4b	1.74 (1H, m)		
5	1.29 (1H, m)	25.65	7, 14, 16
5	0.86 (3H, d, 6.4)	22.06	14
	9.03 (1H, d, 2.1)	147.15	3'
		134.78	1′
	8.61 (1H, d, 2.1)	133.08	1′
		134.17	6', 12', 14'
		160.09	1', 3', 6'
a'	2.77 (1H, d, 19.2)	35.46	8', 12'
b′	3.24 (1H, dd, 7.2, 19.2)		,
	2.26 (1H, m)	34.48	6', 8'
a'	1.43 (1H, dt, 3.9, 13.0)	43.76	6', 14', 15', 16
b′	1.86 (1H, brd, 12.7)		•, • •, • • , • •
a'	2.73 (1H, m)	42.11	11′
• b′	3.07 (1H, brd, 13.5)	12.11	11
D'	1.80 (2H, m)	27.11	9′, 11′
, [′	1.67 (2H, m)	26.23	9', 11 9'
2′			-
2 3'	1.94 (1H, brs)	43.61	6', 8', 14' 9b' 14'
	1 51 (111 44 4 8 12 1)	60.47 50.13	9b', 14'
4a' 4b'	1.51 (1H, dd, 4.8, 12.1)	50.13	8', 16'
4b' 5'	1.74 (1H, m)	25.02	7/ 1// 16/
5'	1.29 (1H, m)	25.93	7', 14', 16'
6	0.86 (3H, d, 6.4)	22.06	14'

Table 1 ¹H and ¹³C NMR data of complanadine A (1) in CD₃OD at 300 K

between parts A and B. Thus the gross structure of complanadine A (1) was assigned as a dimer of lycodine (2), in which C-1 in part A was connected to C-2' in part B.

The phase sensitive NOESY spectrum of 1 showed cross-peaks as shown in computer-generated 3D drawing (Fig. 2). The relative configurations at C-7, C-12, C-13, and C-15 in part A were based on NOESY correlations of H_b -6/H-15, H-12/ H_b -10 and H-3/ H_b -14, while the

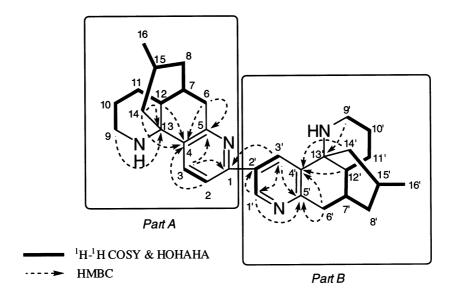


Figure 1. Selected 2D NMR correlations of complanadine A (1)

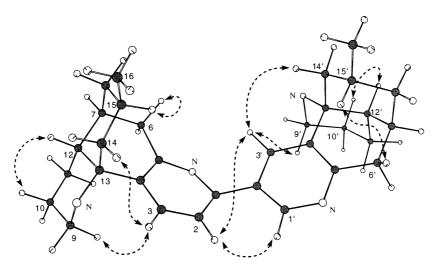


Figure 2. Selected NOESY correlations (dotted arrows) and relative stereochemistry for complanadine A (1)

piperidine and cyclohexane (C-7, C-8, and C-12 to C-15) rings adopted both chair conformations. On the other hand, the corresponding NOESY correlations were also observed for part B. Thus, the relative stereostructure of complanadine A (1) was elucidated to be that shown in Fig. 2. The CD spectrum of 1 in MeOH showed similar CD curves [λ_{max} 260 (θ 4500), 285 (1500), 295 (2000), and 315 (3000) nm] to those [λ_{max} 250 (θ 5000), 280 (3000), and 325 (3000) nm] of lycodine (2), indicating the same absolute stereochemistry for parts A and B of 1 as that of lycodine (2).⁷

Complanadine A (1) is the first dimeric alkaloid containing a lycodine-type $C_{16}N_2$ skeleton among many *Lycopodium* alkaloids reported so far.¹ Complanadine A (1) was cytotoxic against murine leukemia L1210 cells (IC₅₀, 5.6 µg/ml) in vitro.

Acknowledgements

This work was partly supported by a Grant-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan, and by a grant from the Takeda Science Foundation.

References

- For reviews of the Lycopodium alkaloids, see: (a) Ayer, W. A.; Trifonov, L. S. In *The Alkaloids*; Cordell, G. A.; Brossi, A., Ed.; Academic Press: New York, 1994; Vol. 45, p. 233. (b) Ayer, W. A. *Nat. Prod. Rep.* 1991, *8*, 455, and references cited therein.
- 2. Hemscheidt, T.; Spenser, I. D. J. Am. Chem. Soc. 1996, 118, 1799-1800.
- (a) Sha, C.-K.; Lee, F.-K.; Chang, C.-J. J. Am. Chem. Soc. 1999, 121, 9875–9876. (b) Williams, J. P.; St. Laurent, D. R.; Friedrich, D.; Pinard, E.; Roden, B. A.; Paquette, L. A. J. Am. Chem. Soc. 1994, 116, 4689–4696, and references cited therein.
- 4. Liu, J. S.; Zhu, Y. L.; Yu, C. M.; Zhou, Y. Z.; Han, Y. Y.; Wu, F. W.; Qi, B. F. Can. J. Chem. 1986, 64, 837-839.
- 5. Morita, H.; Arisaka, M.; Yoshida, N.; Kobayashi, J. J. Org. Chem. 2000, 65, 6241-6245.
- Triterpenoid constituents have been examined: Tsuda, Y.; Fujimoto, T.; Isobe, K.; Sano, T.; Kobayashi, M. Yakugaku Zasshi, 1974, 94, 970–990; Inubushi, Y.; Sano, T.; Rice, J. R. Aust. J. Chem. 1967, 20, 387–388.
- 7. Ayer, W. A.; Iverach, G. G. Can. J. Chem. 1960, 38, 1823-1826.